Part Number Hot Search : 
SC619 60000 SK302 LTM4601 2SC5966 D74ALV 1000FT HBAT54
Product Description
Full Text Search
 

To Download V23990-K428-A50-P3-14 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-k428-a50-pm preliminary datasheet miniskiip? 3 pim 1200v/50a solderless interconnection mitsubishi generation 6 technology industrial motor drives v23990-k428-a50-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 74 t c =80c 102 t h =80c 79 t c =80c 120 maximum junction temperature t j max 150 c inverter transistor t h =80c 40 t c =80c 55 t h =80c 100 t c =80c 152 t sc t j 150c 10 s v cc v ge =15v 800 v w v c 175 t j max v ce i c t j =t j max v ge i cpulse 1200 a v t p limited by t j max a t j =t j max power dissipation per igbt collector-emitter break down voltage dc collector current maximum junction temperature short circuit ratings repetitive peak collector current t j =t j max p tot i 2 t t c =25c t c =150c 500 a features miniskiip? 3 housing target applications schematic dc forward current surge forward current types i 2 t-value maximum ratings i fav a 2 s i fsm condition input rectifier diode 1200 t j =t j max t p =10ms a w power dissipation per diode p tot gate-emitter peak voltage 100 20 copyright vincotech 1 revision: 3
v23990-k428-a50-pm preliminary datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode t h =80c 42 t c =80c 60 t h =80c 83 t c =80c 125 brake transistor t h =80c 55 t c =80c 57 t h =80c 105 t c =80c 159 t sc t j 150c 10 s v cc v ge =15v 800 v brake diode t j =25c t h =80c 46 t c =80c 64 t h =80c 81 t c =80c 123 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm cti >200 a a 100 a 1200 t j =25c t j =t j max a i frm p tot i f w t j max v rrm v t j =t j max 175 w t p limited by t j max t j =t j max v a p tot 1200 t j max vce 850v, tj top max maximum junction temperature 100 v c 20 gate-emitter peak voltage short circuit ratings collector-emitter break down voltage repetitive peak collector current maximum junction temperature peak repetitive reverse voltage repetitive peak forward current power dissipation per diode c v peak repetitive reverse voltage 1200 power dissipation per diode p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current 100 i frm v rrm v ce i cpuls maximum junction temperature t j max 175 t j =t j max t p limited by t j max dc forward current t stg -40?+125 c t op -40?+(tjmax - 25) a a t p limited by t j max c w c comparative tracking index insulation voltage creepage distance operation temperature under switching condition clearance storage temperature 100 175 turn off safe operating area dc collector current power dissipation per igbt i c v ge copyright vincotech 2 revision: 3
v23990-k428-a50-pm preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max t j =25c 1,07 1,59 t j =125c 0,98 t j =25c 0,88 t j =125c 0,74 t j =25c 4 t j =125c 6 t j =25c 0,1 t j =125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 0,88 k/w t j =25c 5,4 6 6,5 t j =150c t j =25c 1,6 1,86 2,4 t j =150c 2,23 t j =25c 1 t j =150c t j =25c 500 t j =150c t j =25c 119 t j =150c 116 t j =25c 32 t j =150c 37 t j =25c 155 t j =150c 206 t j =25c 62 t j =150c 96 t j =25c 3,86 t j =150c 6,08 t j =25c 2,66 t j =150c 4,51 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 0,95 k/w t j =25c 1,35 1,75 2,05 t j =150c 1,75 t j =25c 42 t j =150c 50 t j =25c 271 t j =150c 465 t j =25c 4,98 t j =150c 10,08 di ( rec ) max t j =25c 355 /d t t j =150c 155 t j =25c 1,89 t j =150c 3,95 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,15 k/w tj=25c 15 15 280 none 117 3210 37 tj=25c 0 rgon=16 ? c rss q rr i ces i rrm v f t r t d(off) r gint v ge(th) v ce(sat) erec c oss t rr q gate input capacitance output capacitance turn-off energy loss per pulse integrated gate resistor inverter transistor gate emitter threshold voltage value conditions 50 50 characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode v v 50 m ? ma 1600 i r reverse current mws a/ s e on e off t d(on) t f turn-on delay time rise time gate-emitter leakage current i ges f=1mhz fall time 0 20 1200 600 turn-on energy loss per pulse 15 50 c ies gate charge inverter diode peak reverse recovery current reverse transfer capacitance reverse recovered energy 15 50 diode forward voltage reverse recovery time peak rate of fall of recovery current collector-emitter saturation voltage turn-off delay time reverse recovered charge 25 0 50 600 50 rgoff=16 ? collector-emitter cut-off current incl. diode rgon=16 ? 0,0008 c v na v v ma ns a nc mws ns ? nf copyright vincotech 3 revision: 3
v23990-k428-a50-pm preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value conditions characteristic values t j =25c 5,5 6 6,5 t j =150c t j =25c 1,6 1,83 2,4 t j =150c 2,17 t j =25c 1 t j =150c t j =25c 500 t j =150c none t j =25c 120 t j =150c 116 t j =25c 51 t j =150c 56 t j =25c 147 t j =150c 195 t j =25c 54 t j =150c 94 t j =25c 4,78 t j =150c 7,34 t j =25c 2,61 t j =150c 4,37 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 0,91 k/w t j =25c 1,35 1,66 2,05 t j =150c 1,61 t j =25c 10 t j =150c t j =25c 31 t j =150c 40 t j =25c 307 t j =150c 511 t j =25c 4,75 t j =150c 4,75 di ( rec ) max t j =25c 226 /d t t j =150c 126 t j =25c 1,81 t j =150c 3,83 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,17 k/w vincotech ptc reference tj=25c e b-value 7,635*10-3 tj=25c b-value b (25/50) 1/k b (25/100) tj=25c 1,731*10-5 1/k2 v v ma na ? ns mws mws c v a ns a/ s a ? 1000 3 -3 % tj=25c tj=25c gate-emitter leakage current i ces collector-emitter saturation voltage collector-emitter cut-off incl diode gate emitter threshold voltage brake transistor v ge(th) gate charge input capacitance q gate reverse transfer capacitance output capacitance c ies peak rate of fall of recovery current peak reverse recovery current reverse recovered charge c oss e on turn-off energy loss per pulse rise time turn-on energy loss per pulse turn-on delay time fall time integrated gate resistor turn-off delay time r gint pf 117 nc i ges 0 15 t f c rss v ce(sat) t d(on) t r f=1mhz deviation of r100 mw/k power dissipation p ? 1670,313 rated resistance r power dissipation constant r/r r100=1670 ? 15 rgon=16 ? rgoff=16 ? v ce =v ge t d(off) e off 15 15 0 0 20 50 37 15 brake diode reverse recovery energy t rr q rr e rec reverse recovery time i rrm diode forward voltage reverse leakage current thermistor v f i r rgon=16 ? rgon=16 ? rgon=16 ? 0,0008 50 600 50 50 50 1200 600 600 25 tj=25c tc=100c tc=100c tj=25c 280 3210 copyright vincotech 4 revision: 3
v23990-k428-a50-pm preliminary datasheet figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 output inverter igbt figure 4 output inverter fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 50 100 150 200 012345 v ce (v) i c (a) 0 20 40 60 80 036912 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 01234 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 012345 v ce (v) i c (a) copyright vincotech 5 revision: 3
v23990-k428-a50-pm preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 ? i c = 50 a r goff = 16 ? figure 7 output inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 ? i c = 50 a output inverter e on high t e off high t e on low t e off low t 0 4 8 12 16 0 25 50 75 100 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 3 6 9 12 0 1632486480 r g ( ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 1 2 3 4 5 0 25 50 75 100 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 1 2 3 4 5 0 1632486480 r g ( ) e (mws) copyright vincotech 6 revision: 3
v23990-k428-a50-pm preliminary datasheet figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 ? i c = 50 a r goff = 16 ? figure 11 output inverter fwd figure 12 output inverter fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 16 ? v ge = 15 v output inverter t doff t f t don t r 0,00 0,01 0,10 1,00 0 25 50 75 100 i c (a) t ( s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0,2 0,4 0,6 0,8 0 1632486480 r gon ( ) t rr ( s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 1632486480 r g ( ) t ( s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0,2 0,4 0,6 0,8 0 255075100 i c (a) t rr ( s) copyright vincotech 7 revision: 3
v23990-k428-a50-pm preliminary datasheet figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 16 ? v ge = 15 v figure 15 output inverter fwd figure 16 output inverter fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 16 ? v ge = 15 v output inverter t j = t jmax - 25c i rrm t j = 25c 0 30 60 90 120 0 1632486480 r gon ( ) i rrm (a) i rrm t j = t jmax -25c q rr t j = 25c q rr 0 3 6 9 12 15 0 1632486480 r gon ( ) q rr ( c) t j = t jmax -25c i rrm t j = 25c i rrm 0 10 20 30 40 50 60 0 255075100 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 3 6 9 12 15 0 25 50 75 100 i c (a) q rr ( c) copyright vincotech 8 revision: 3
v23990-k428-a50-pm preliminary datasheet figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c )d i 0 /dt,di rec /dt = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 16 ? v ge = 15 v figure 19 output inverter igbt figure 20 output inverter fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,95 k/w r thjh = 0,92 k/w r thjh = 1,15 k/w r thjh = 0,93 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,03 5,8e+00 0,03 4,7e+00 0,04 6,0e+00 0,03 4,9e+00 0,12 1,2e+00 0,10 9,5e-01 0,12 1,0e+00 0,09 8,1e-01 0,44 2,3e-01 0,36 1,8e-01 0,37 2,1e-01 0,30 1,7e-01 0,22 6,9e-02 0,18 5,6e-02 0,34 7,1e-02 0,27 5,8e-02 0,10 1,1e-02 0,08 8,7e-03 0,17 1,6e-02 0,13 1,3e-02 0,03 1,0e-03 0,02 8,5e-04 0,06 4,5e-03 0,05 3,7e-03 thermal grease phase change interface thermal grease phase change interface output inverter t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 3000 6000 9000 12000 0 1632486480 r gon ( ) di rec / dt (a/ s) di 0 /dt di rec /dt 0 400 800 1200 1600 0 255075100 i c (a) di rec / dt (a/ s) di rec /dt di 0 /dt copyright vincotech 9 revision: 3
v23990-k428-a50-pm preliminary datasheet figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23 output inverter fwd figure 24 output inverter fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 c t j = 175 c output inverter 0 50 100 150 200 0 50 100 150 200 t h ( o c) p tot (w) 0 15 30 45 60 75 0 50 100 150 200 t h ( o c) i c (a) 0 40 80 120 160 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 3
v23990-k428-a50-pm preliminary datasheet figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce )v ge = f(q ge ) at at d = single pulse i c = 50 a t h = 80 oc v ge = 15 v t j =t jmax oc figure 27 output inverter igbt figure 28 output inverter igbt short circuit safe operating area (scsoa) typical short circuit collector current as a function of gate-emitter voltage i c = f(v ce ) at at v cc 850 v t w 10 us v ce 1200 v v cc = 800 v t j 150 oc t j = 150 oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 10us 100u s 1ms 10m s 100ms d c 10 0 10 3 0 2 4 6 8 10 12 14 16 18 20 0 40 80 120 160 q g (nc) v ge (v) 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 13 14 15 16 17 v ge (v) i c / i n (a) 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 0 200 400 600 800 1000 1200 1400 v ge (v) i c(normalized) [a] copyright vincotech 11 revision: 3
v23990-k428-a50-pm preliminary datasheet figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j =t jmax -25 oc v cc 850 v u ccminus =u ccplus switching mode : 3 level switching 0 25 50 75 100 125 0 200 400 600 800 1000 1200 1400 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 12 revision: 3
v23990-k428-a50-pm preliminary datasheet figure 1 brake igbt figure 2 brake igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 151 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 brake igbt figure 4 brake fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v brake 0 50 100 150 200 012345 v ce (v) i c (a) 0 10 20 30 40 50 60 03691215 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 40 80 120 160 200 240 01234 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 012345 v ce (v) i c (a) copyright vincotech 13 revision: 3
v23990-k428-a50-pm preliminary datasheet figure 5 brake igbt figure 6 brake igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/151 c t j = 25/151 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 ? i c = 50 a r goff = 16 ? figure 7 brake fwd figure 8 brake fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/151 c t j = 25/151 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 ? i c = 50 a brake e rec t j = t jmax - 25c t j = 25c e rec 0 1 2 3 4 5 0 25 50 75 100 i c (a) e (mws) e rec t j = t jmax -25c t j = 25c e rec 0 1 2 3 4 5 0 20406080 r g ( ) e (mws) e off t j = t jmax -25c e on e on t j = 25c e off 0 5 10 15 20 0 25 50 75 100 i c (a) e (mws) t j = t jmax -25c e off e on e on t j = 25c e off 0 3 6 9 12 15 0 20406080 r g ( ) e (mws) copyright vincotech 14 revision: 3
v23990-k428-a50-pm preliminary datasheet figure 9 brake igbt figure 10 brake igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 25/151 c t j = 25/151 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 ? i c = 50 a r goff = 16 ? figure 11 brake igbt figure 12 brake fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 0,91 k/w r thjh = 0,73 k/w r thjh = 1,17 k/w r thjh = 0,95 k/w thermal grease phase change interface brake thermal grease phase change interface t doff t f t don t r 0,00 0,01 0,10 1,00 0 25 50 75 100 i c (a) t ( s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 1632486480 r g ( ) t ( s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 15 revision: 3
v23990-k428-a50-pm preliminary datasheet figure 13 brake igbt figure 14 brake igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 brake fwd figure 16 brake fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 oc t j = 175 oc brake 0 40 80 120 160 200 0 50 100 150 200 t h ( o c) p tot (w) 0 15 30 45 60 75 0 50 100 150 200 t h ( o c) i c (a) 0 30 60 90 120 150 180 0 50 100 150 200 th ( o c) p tot (w) 0 20 40 60 80 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 16 revision: 3
v23990-k428-a50-pm preliminary datasheet figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 sd = t p / t r thjh = 0,88 k/w figure 3 rectifier diode figure 4 rectifier diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc input rectifier bridge 0 50 100 150 200 250 300 350 0 0,5 1 1,5 2 v f (v) i f (a) t j = 25c t j = t jmax - 25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 - 10 - 10 - 10 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 40 80 120 160 200 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 100 120 140 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 17 revision: 3
v23990-k428-a50-pm preliminary datasheet figure 1 thermistor typical ntc characteristic as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 500 1000 1500 2000 2500 3000 25 45 65 85 105 125 t (c) r/ ? copyright vincotech 18 revision: 3
v23990-k428-a50-pm preliminary datasheet t j 150 c r g on 16 ? r goff 16 ? figure 1 output inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of tdon, t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 50 a i c (100%) = 50 a t doff = 0,21 s t don = 0,12 s t eoff = 0,82 s t eon = 0,42 s figure 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 50 a i c (100%) = 50 a t f = 0,10 s t r = 0,04 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -25 0 25 50 75 100 125 -0,1 0,1 0,3 0,5 0,7 0,9 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -50 0 50 100 150 200 3,9 4 4,1 4,2 4,3 4,4 4,5 time(us) % i c v ce t eon v ge fitted i c 10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 0 0,1 0,2 0,3 0,4 time (us) % v ce i c t f i c 10% i c 90% -50 0 50 100 150 200 4 4,1 4,2 4,3 4,4 4,5 time(us) % t r v ce i c copyright vincotech 19 revision: 3
v23990-k428-a50-pm preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 29,97 kw p on (100%) = 29,97 kw e off (100%) = 4,51 mj e on (100%) = 6,08 mj t eoff = 0,82 s t eon = 0,42 s figure 7 output inverter fwd figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v geoff = -15 v v d (100%) = 600 v v geon = 15 v i d (100%) = 50 a v c (100%) = 600 v i rrm (100%) = -50 a i c (100%) = 50 a t rr = 0,47 s q g = 199,06 nc switching definitions output inverter i c 1% v ge 90% -25 0 25 50 75 100 125 -0,2 0,1 0,4 0,7 1 time (us) % p off e off t eoff v ce 3% v ge 10% -50 0 50 100 150 200 3,8 4 4,2 4,4 4,6 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -50 0 50 100 150 200 250 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -120 -80 -40 0 40 80 120 3,8 4 4,2 4,4 4,6 4,8 time(us) % i d v d fitted copyright vincotech 20 revision: 3
v23990-k428-a50-pm preliminary datasheet figure 9 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 50 a p rec (100%) = 29,97 kw q rr (100%) = 10,08 c e rec (100%) = 3,95 mj t qrr = 1,00 s t erec = 1,00 s switching definitions output inverter t qrr -150 -100 -50 0 50 100 150 3,8 4,2 4,6 5 5,4 % i d q rr time ( us ) -25 0 25 50 75 100 125 3,8 4,2 4,6 5 5,4 time(us) % p rec e rec t er ec copyright vincotech 21 revision: 3
v23990-k428-a50-pm preliminary datasheet version ordering code in datamatrix as in packaging barcode as with std lid (black v23990-k12-t-pm) v 23990-k428-a50-/0a/-pm k428a50 k428a50-/0a/ with std lid (black v23990-k12-t-pm) and p12 v23990-k428-a50-/1a/-pm k428a50 k428a50-/1a/ with thin lid (white v23990-k13-t-pm) v23990-k428-a50-/0b/-pm k428a50 k428a50-/0b/ with thin lid (white v23990-k13-t-pm) and p12 v23990-k428-a50-/1b/-pm k428a50 k428a50-/1b/ outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 22 revision: 3
v23990-k428-a50-pm preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: target product status datasheet status definition this datasheet contains the design specifications for product development. specific ations may change in any manner without notice. the dat a contained is exclusively intended for technica lly trai ned staff. preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for te chnically tr ained st aff. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tes ted values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to i mprove reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product o r circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express wri tten approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 23 revision: 3


▲Up To Search▲   

 
Price & Availability of V23990-K428-A50-P3-14

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X